Aplikuj teraz

GenAI Scrum Master (Praca zdalna)

Pragmile

Warszawa, Ochota
30240 zł/mth.
Zdalna
Jira
🤖 AI
Agile
🌐 Zdalna

Requirements

Expected technologies

Jira

AI

Agile

Our requirements

  • Education: Bachelors/Masters in CS or equivalent industry experience (5+ years in ML, 2+ in GenAI).
  • Certifications: CSM, PSM, or SAFe Scrum Master.
  • Technical Fluency:
  • Understanding of AI/ML workflows (model training, validation, deployment).
  • Familiarity with tools: Azure DevOps, Jira, MLflow, Databricks.
  • Awareness of cloud AI services (Azure ML, GCP Vertex AI, AWS SageMaker).
  • Soft Skills:
  • Conflict resolution in high-ambiguity AI projects.
  • Stakeholder management (C-suite to junior data engineers).

Your responsibilities

  • Agile Leadership for AI Teams
  • Lead sprint planning/retrospectives tailored to AI project cycles:
  • Account for model training times, hyperparameter tuning, and data dependencies.
  • Manage backlog refinement for AI-specific tasks (e.g., data labeling, A/B testing).
  • Resolve AI workflow bottlenecks:
  • GPU resource contention, dataset versioning delays, or model validation bottlenecks.
  • Coordinate with DevOps for MLOps pipeline integration (CI/CD for models).
  • Stakeholder Collaboration
  • Bridge technical/non-technical communication:
  • Help translate AI model metrics (precision, recall, F1) into business impact for stakeholders.
  • Manage expectations around probabilistic AI outputs (e.g., hallucination risks).
  • Partner with AI Architects/Data Engineers to:
  • Align sprints with cloud resource availability (Azure ML, GCP Vertex AI).
  • Track dependencies for multi-team initiatives (e.g., GenAI + data lake teams).
  • Process Optimization
  • Adapt Scrum/Kanban for AI/ML realities:
  • Define “Done” for model iterations (e.g., validation accuracy ≥ 90%).
  • Implement hybrid sprints for research (exploratory) vs. deployment phases.
  • Introduce tools for AI Agile:
  • Jira plug-ins for experiment tracking (MLflow, Weights & Biases).
  • Burndown charts accounting for cloud compute costs (Azure/GCP spend).
  • Team Enablement
  • Coach teams on AI-aware Agile practices:
  • Balancing technical debt (legacy models) vs. innovation (LLM prototyping).
  • Psychological safety for failed experiments (e.g., model drift issues).
  • Foster continuous learning:
  • Organize workshops on AI ethics, MLOps, or GenAI trends.
  • Share retrospectives across AI teams to propagate best practices.
Wyświetlenia: 9
Opublikowanaokoło miesiąc temu
Wygasaza 23 dni
Tryb pracyZdalna
Źródło
Logo

Podobne oferty, które mogą Cię zainteresować

Na podstawie "GenAI Scrum Master"