Aplikuj teraz

MLOps Engineer (Praca zdalna)

apreel

Centrum, Warszawa +1 więcej
25 200 - 26 900 PLN
Pełny etat
☁️ AWS
🐍 Python
🚢 Kubernetes
CI/CD
🤖 containerization
orchestration
Pełny etat
☁️ Azure
DDD
🧠 ML
🐳 Docker
Spark
🧠 MLFlow
GCP
Terraform
Ansible

Czym będziesz się zajmować? Your key responsibilities: Design, build, and maintain end-to-end ML pipelines using SageMaker Pipelines or Kubeflow. Implement CI/CD workflows for ML using tools such as GitHub Actions, GitLab, Jenkins, or AWS CodePipeline. Manage containerized deployments with Docker and Kubernetes (ECS/EKS). Oversee model versioning, registry, and tracking with MLflow or SageMaker Model Registry. Develop and operate monitoring solutions for model performance, drift detection, and data quality. Build and maintain data engineering workflows using AWS Glue, EMR, Spark, or PySpark. Implement Infrastructure as Code (IaC) using Terraform or AWS CloudFormation. Ensure observability and reliability using CloudWatch, Prometheus, ELK, or Datadog. Follow AWS security best practices (IAM, VPC, KMS, Secrets Manager, PrivateLink). Collaborate with cross-functional teams to integrate ML systems into production applications. 

Kogo poszukujemy? We are looking for an experienced MLOps Engineer to design, build, and optimize scalable machine learning infrastructure on AWS. In this role, you’ll work closely with data scientists and software engineers to productionize ML models, automate workflows, and ensure reliability, security, and observability across our ML ecosystem. You’ll be responsible for shaping and maintaining the full ML lifecycle — from data pipelines and model training to deployment, monitoring, and continuous improvement. Design, build, and maintain end-to-end ML pipelines using SageMaker Pipelines or Kubeflow. Implement CI/CD workflows for ML using tools such as GitHub Actions, GitLab, Jenkins, or AWS CodePipeline. Manage containerized deployments with Docker and Kubernetes (ECS/EKS). Oversee model versioning, registry, and tracking with MLflow or SageMaker Model Registry. Develop and operate monitoring solutions for model performance, drift detection, and data quality. Build and maintain data engineering workflows using AWS Glue, EMR, Spark, or PySpark. Implement Infrastructure as Code (IaC) using Terraform or AWS CloudFormation. Ensure observability and reliability using CloudWatch, Prometheus, ELK, or Datadog. Follow AWS security best practices (IAM, VPC, KMS, Secrets Manager, PrivateLink).

Wyświetlenia: 7
Opublikowanaokoło miesiąc temu
Wygasaza około 5 godzin
Tryb pracyPełny etat
Źródło
Logo

Podobne oferty, które mogą Cię zainteresować

Na podstawie "MLOps Engineer"